Differential Activation of a Mouse Estrogen Receptor β Isoform (mERβ2) with Endocrine-Disrupting Chemicals (EDCs)
نویسندگان
چکیده
BACKGROUND Endocrine-disrupting chemicals (EDCs) are suspected of altering estrogenic signaling through estrogen receptor (ER) α or β (mERβ1 in mice). Several EDC effects have been reported in animal studies and extrapolated to human studies. Unlike humans, rodents express a novel isoform of ERβ (mERβ2) with a modified ligand-binding domain sequence. EDC activity through this isoform remains uncharacterized. OBJECTIVES We identified the expression pattern of mERβ2 in mouse tissues and assessed the estrogenic activity of EDCs through mERβ2. METHODS mERβ2 mRNA expression was measured in mouse tissues. HepG2 cells were used to assess the transactivation activity of mERβ isoforms with EDCs and ER co-activators. 293A cells transiently transfected with mER isoforms were used to detect EDC-mediated changes in endogenous ER target gene expression. RESULTS Expression of mERβ2 mRNA was detected in mouse reproductive tissues (ovary, testis, and prostate) and lung and colon tissues from both female and male mice. Five (E2, DES, DPN, BPAF, Coum, 1-BP) of 16 compounds tested by reporter assay had estrogenic activity through mERβ2. mERβ2 had a compound-specific negative effect on ERβ/ligand-mediated activity and ER target genes when co-expressed with mERβ1. mERβ2 recruited coactivators SRC2 or SRC3 in the presence of EDCs, but showed less recruitment than mERβ1. CONCLUSION mERβ2 showed weaker estrogenic activity than mERβ1 in our in vitro system, and can dampen mERβ1 activity. In vivo models of EDC activity and ER-mediated toxicity should consider the role of mERβ2, as rodent tissue responses involving mERβ2 may not be reproduced in human biology.
منابع مشابه
Analysis of environmental endocrine disrupting activities in wastewater treatment plant effluents using recombinant yeast assays incorporated with exogenous metabolic activation system.
OBJECTIVE To measure the endocrine disrupting chemicals (EDCs) in wastewater and evaluate the EDCs removal efficiencies in the municipal wastewater treatment plants (WWTP). METHODS A battery of in vitro recombinant yeast bioassays incorporated with exogenous metabolic activation system (rat liver preparation, S9 mix) was conducted to assess the estrogen receptor (ER), androgen receptor (AR), ...
متن کاملPhytoestrogen signaling and symbiotic gene activation are disrupted by endocrine-disrupting chemicals.
Some organochlorine pesticides and other synthetic chemicals mimic hormones in representatives of each vertebrate class, including mammals, reptiles, amphibians, birds, and fish. These compounds are called endocrine-disrupting chemicals (EDCs). Similarly, hormonelike signaling has also been observed when vertebrates are exposed to plant chemicals called phytoestrogens. Previous research has sho...
متن کاملEndocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action.
Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and nongenomic ER activity throug...
متن کاملDifferential Estrogenic Actions of Endocrine-Disrupting Chemicals Bisphenol A, Bisphenol AF, and Zearalenone through Estrogen Receptor α and β in Vitro
BACKGROUND Endocrine-disrupting chemicals (EDCs) are widely found in the environment. Estrogen-like activity is attributed to EDCs, such as bisphenol A (BPA), bisphenol AF (BPAF), and zearalenone (Zea), but mechanisms of action and diversity of effects are poorly understood. OBJECTIVES We used in vitro models to evaluate the mechanistic actions of BPA, BPAF, and Zea on estrogen receptor (ER) ...
متن کاملToxicological Mechanism of Endocrine Disrupting Chemicals:Is Estrogen Receptor Involved?
Endocrine disrupting chemicals (EDCs) have been shown to interfere with physiological systems, i.e., adversely affecting hormone balance (endocrine system) , or disrupting normal function, in the female and male reproductive organs. Although endocrine disruption is a global concern for human health, its impact and significance and the screening strategy for detecting these synthetic or man-made...
متن کامل